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1: INTRODUCTION

An optimal design algorithm is presented for the analysis of general solidification processes, and is demon-

strated for the growth of GaAs crystals in a Bridgman furnace. The system is optimal in the sense that the

prespecified temperature distribution in the solidifying materials is obtained to maximize product quality. The op-

timization uses traditional numerical programming techniques which require the evaluation of cost and constraint

functions and their sensitivities. The finite element method is incorporated to analyze the crystal solidification

problem, evaluate the cost and constraint functions, and compute the sensitivities. These techniques are demon-

strated in the crystal growth application by determining an optimal furnace wall temperature distribution to obtain

the desired temperature profile in the crystal, and hence to maximize the crystal's quality. A similar problem is

investigated by Dantzig and Chao [1 ], however their approach does not utilize numerical optimization techniques.

Several numerical optimization algorithms are studied to determine the proper convergence criteria, effective

one-dimensional search strategies, appropriate forms of the cost and constraint functions, etc. In particular, we

incorporate the conjugate gradient and Quasi-Newton methods for unconstrained problems[2]. The efficiency and

effectiveness of each algorithm is presented in the example problem.

We have chosen to adapt an existing commercially available finite element program, HDAP [3], to compute

of the sensitivities, rather than develop a new code. Thus, we are in position to investigate larger and more

complicated problems in the future without significant code development. The explicit sensitivities are computed

analytically by the adjoint technique[4], which has been applied to nonlinear transient conduction problems by

Tortorelli et. al. [5]. Large computational savings and accurate calculations are realized by utilizing an explicit

approach as opposed to the cosily and sometimes unreliable finite difference method [5, 6].

In the following section, a brief outline of the conjugate gradient and quasi-Newton methods for unconstrained

optimization are presented. In section 3, the adjoint sensitivity method is reviewed and presented in a specialized

form appropriate to the processing problem. An example problem is presented in the last section.
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2: METHODS OF ANALYSIS
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I
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2.1 Optimization Algorithms

Vanderplaats [2] presents an excellent exposition of the algorithms which have been developed to resolve

design optimization problems. The search method algorithms for unconstrained problems are characterized by

sequential searches in the design space to reduce the value of the objective function, G. Beginning at a specified

initial point in design space b, a line search is performed to find the minimum value of the objective in a

search direction, S. Once the minimum is found in this direction, the present design is updated and a new search

direction is chosen. This process is repeated until the design converges to its minimum objective function value.

In this section we will briefly outline three search methods for unconstrained optimization. The methods are

distinguished by the manner in which the sequence of search directions is determined.

Search methods which utilize derivatives of the objective function tend to be more efficient (i. e. will require

fewer iterations) than zero-order methods. This is true because the gradients suggest the direction one should

move in design space to reduce the value of the objective function. The sensitivity analyses, described in the

next section, provide this gradient information at relatively little additional cost beyond that which is required to

analyze the process and evaluate the objective function. Accordingly, the discussion here is limited to these first-

order gradient-based methods, specifically, the methods of steepest decent, Fletcher- Reeves conjugate gradient,

and the Quasi-Newton are described. The methods differ in the way that the search directions are determined.

Line searches are performed for all of the above-described algorithms. We are using a variant of Brent's

Method for this purpose[7]. In this technique, the objective function is assumed to vary quadratically with the

scalar a along the vector in design space given by b + aS. Thus, the problem becomes one of finding the value

of a corresponding to the minimum G. If G were truly quadratic in a, then a combination of three function

evaluations or derivatives with respect to a would suffice to obtain the minimum. In practice, G is generally

not quadratic in a, hence this technique requires repeated evaluations of G and its derivatives to determine the

minimum. In some cases, the parabolic interpolation can diverge. To circumvent this problem, Brent's Method

uses interval sectioning when divergence of the parabolic interpolation is detected.

Once the minimum for the given search direction is found, a new direction must be chosen. The most

simplistic algorithm uses the gradient to determine the new search direction, i. e.

s = -VG (1)

This "Method of Steepest Descent" has been shown to be inefficient [2]. Better algorithms utilize information

about previously searched directions to construct the next search vector. In the Fletcher-Reeves conjugate gradient

method, the new search direction is given by

SJ-1 (2)
sS = -Va(b') + IVa(6'-')l 2

where b / is the design vector at the beginning of the j¢ line search. Such a selection of the S ensures that

the search directions are Q-orthogonal. After several steps, it is possible that searching in direction Sl will not

improve the objective, and the process is then re- initialized with Equation (1).

In the Quasi-Newton methods for unconstrained minimization, we consider a Taylor series expansion of G

about the present design, bo.

G(b) _ G(bo) + VG. 6b + 16bTH • Sb (3)

1
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where H is the Hessian matrix, and 6b = b - bo is the new search direction. Differentiating this equation with

respect to the design variation and setting the result to zero (far the minimum) yields

_b = -H(b0)-_VG(bo) (4)

Rather than compute the Hessian inverse, which is usually difficult because it contains second-order sensitivity

information, we construct a series of approximations to H -1 from

(H_a)a = I

(H-')J+I = (H-')J + D j

(5)

where

Dj = 6b.6b (H-')J (H-l) jT (6)

55. $(VG) 6(VG)T(H -' )J 6(VG)

This approximation to the Hessian inverse (Equation (5)) is then used with Equation (4) to determine the

appropriate design increment.

A more detailed discussion of these algorithms is given in Reference [2]. Clearly, the use of these algorithms

requires that the sensitivities be computed accurately, and because they are computed many times (once per

dcsign iteration), they must also be computed efficiently. In the next section, an efficient algorithm is dcscribed

for obtaining the sensitivities after analyzing the original problem.

2.2 Explicit Design Sensitivity Analysis using an Adjoint Method

Tortorelli, et a/.[5] described a Lagrange multiplier method for formulating the adjoint design sensitivities

for nonlinear transient thermal systems. The variation of a general design functional may be expressed in explicit

form with respect to variations in the prescribed boundary conditions. However, the design functional depends

on these explicit quantities and implicitly on the temperature field. To obtain the explicit sensitivities, the implicit

dependency on the temperature field must be resolved.

The design functional is expressed as

C(b/--[ I(r)dv +]' 9(T,b)dA (7)
t¢

B OB

where the temperature T(x,b) represents the implicit response fields in G, b is the vector of design parameters,

and the position vector is denoted by x. The design vector will be used to define the boundary conditions, which

ultimately control the values of all the response quantifies and G. All quantities are defined in the region B or on

the bounding surface OB (with outward unit normal vector n), and are assumed to be smooth enough to justify

the operations performed. Furthermore, differentiability of G with respect to the design is assumed.

The response quantities are implicitly defined by the design and the following mixed boundary value problem

V.q+r=0 inB (8)

with boundary conditions

T = T P on AT

q" = qP ( T, b ) on Aq

q" = h(T, b)(T - T_(b)) on ah

(9)

L J



216

Third International Con.fer_nc_ on Inverse Design Concepts and Opurnlz_uon in Engine_nng Sciences

(]CID_-'S-III). Echtor: G.S. Dulik_.vi=h. Washington D.C.. Octo_r 23-25_ 1991..

F ]
where q(x, b) is the heat flux vector, r(T, g, x, b) represents the temperature- and temperature gradient-dependent

internal heat generation, g(x, b) = VT(x, b) is the temperature gradient, q" - q • n is the surface heat flux,

and h(T, b) is a convective transport coefficient between the surface of the domain and the ambient temperature,

T_(b). AT, Aq and Ah are complementary subsurfaces nfOB and correspond to surfaces with prescribed tempera-

ture _, prescribed flux _, and prescribed convective boundary conditions, respectively. Note that the prescfi_

flux. heat transfer coefficient and ambient temperature distribution are all functions of the design vector, b. and

the temperature to allow modeling of nonlinear heat flux and convective loads, as well as radiation. Note also

that the internal heat generation term may be used m model convective transport terms when fluid flow is present.

To complete the representation, a constitutive relation is introduced for the heat flux where/1 is a general function

of the position, temperature and temperature gradient,

q = _i(x, T, g) (lO)

We will follow a finite element formulation, where Equation (8) is written in weak form and the boundary

conditions in Equation (9) enter after integrating by parts and applying the divergence theorem.[8] First define

the weighted residual, R, as

R(T,b,A)- - f {V,_.q- Ar}dV + f ,_qPdZ + f _,h(T- T_)dZ (11)

B Aq A_

where ,_ is a weighting function which will described in more detail below. We use a displacement approach, in

which the only dependent field is the temperature. Thus, Equations (9) and (10) are strictly enforced, and A = 0

on AT. When R is equal to zero (for all admissable A) then Equation (8) is satisfied.

In general, the nonlinear nature of the problem will require that Newton-Raphson iteration be performed to

find the zero of the residual. We introduce a truncated Taylor series expansion to update the temperature field
from 7_ at iteration I to 7¢÷1 at iteration I+1:

Rt+I _ R(T',b,A) + { OR(Tt'b'A) }OT AT = 0 (12)

where AT = T t+l -T t and

OR(Tt,b,)_)OT AT =- [.,. (VA • -_(AT)O_t + VA- _ggOitV(AT) - A-_-fATOr _ A_gV(AT))dV+
B

A Oqp-- "
f "_'..aldA fa rob h]ATdA+j L Cr- r*)+

(13)

Aq A_

In finite element analyses, R and _ form the residual vector and tangent stiffness matrix, respectively. The

incremental problem given in Equation (12) is solved iteratively until the solution converges.

As we described earlier, changes in b affect the boundary conditions, which in turn affect the response

quantities, which ultimately alter the value of the response functional G. The objective of sensitivity analysis

then, is to derive an explicit expression for VG in which only variations of the design parameters _b, are present

In the Lagrange multiplier method for the adjoint sensitivity analysis, the residual is adjoined to G to define

an augmented functional G',

G" = f fdv + f gdA- f (vA._- r)AdV + / Aq"dA + f Ah(T- T_)dA (14)

B OB B A ! At,

L J
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This ensures that the governing equations are satisfied. In this equation, A can be interpreted as a Lagrange

multiplier, which will eventually be identified as the temperature field of a second, fictitious adjoint problem

defined over B. Note that since the augmented term and its derivative are both idendcally zero, G" = G and

VG" = VG.

Formal differentiation of Equation (14) with respect to the design vector gives

'ci':"'-i(" "":")"d--g= _-T_-_"_+ _+b-_T_ "_-
B OB

f( OqOT O_tOVT OrOTVA. 0--T 0"-'b+ VA- 0g 0b A_-_ 0b
B

/.,(ro,,

Og -_ ]dW + J k,"_'_ + dA+ (15)
A,

With the exception of A and the implicit terms involving the derivatives of T and VT with respect to b, all of

the terms in Equation (15) are known once the original analysis problem is solved. In the sensitivity analysis,

we will eliminate the implicit terms by a particular choice of the Lagrange multiplier A.

To this end, we separate VG* into terms which explicit quantities, VG_, and those which are implicit

quantitiesVGT, where

vC'r = f Og [ ,_0: .-_-_d A + j -6-ff ctA + f ,_( _b (T - Too ) - h-_ ) d A

aB A, A,

(16)

and

Or OT A Or OVT) (17)A.-_ Ob Og Ob dV +

where _ = 0 on AT. On examination of Equation (17) and Equations (8) and (9) we note that the implicit term

can be annihilated by solving the following adjoint problem: Find that value of A for which

OG OR(T, b, A) OT

OT OT Ob
(18)

for all admissible _i_" Note that _-_ is the indicated quantity in Equation (17). This equation is linear in A, and

is the adjoint operator for the incremental problem (Equation (12)). This allows us to solve the adjoint problem

efficiently when the finite element method.is used.

Indeed, after solving the original problem with Newton-Raphson iteration, we next store the final decomposed
aG

tangent stiffness matrix. Then the adjoint load vector (_y) is formed which corresponds to the following adjoint

L J
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loads:

Oh= -5-f(T - )

Of
ra=-_f inB

A=O onAT

09
q_ = -_ on Aq

)+h A+_-_ onAh

(19)

Finally, we perform a back substitution on the transpose (adjoim) of the decomposed stiffness matrix to evaluate

A. Once A is determined, then VG_ = 0 and the sensitivities are obtained directly from Equation (16). The

efficiency of this method lies in the fact that a single back-substitution into the already decomposed stiffness

matrix, followed by substitution in Equation (16), yields all of the components of the sensitivity vector. In

general, the solution of the primal problem requires several Newton-Raphson iterations. Hence, the added cost

of evaluating the sensitivities is relatively small.

In the finite element evaluation of the adjoint load vector and VG), the same numerical quadrature is used as

that used to evaluate G, the tangent stiffness matrix and residual. This ensures that consistent results are obtained.

In the next section, these methods will be used in an example problem concerning Bridgman crystal growth.

3: APPLICATION TO A CRYSTAL GROWTH PROCESS

3.1 Bridgman Crystal Growth

When crystals for electronics applications are grown using the Bridgrnan process, the finished bulk crystals

are sliced into thin wafers perpendicular to the growth direction. Electronic devices are then fabricated on these

wafers. The properties of the devices are highly dependent on the degree of perfection and compositions of

the wafer. Since these attributes are set during growth of the crystal, control of the growth process is vital.

In particular, fluid flow in the melt during solidification can interact with the solute field near the crystal-melt

interface to adversely affect the chemical composition of the crystal.[9] The primary means for controlling the

convective flow is to control the shape of the crystal-melt interface, which may be accomplished by defining

appropriate process parameters.

The latest generation of Bridgman furnaces are divided into several independent heating zones along their

length, so that complex temperature distributions can be applied, While this gives these furnaces great flexibility,

it also necessitates that detailed analyses be performed to relate the temperatures imposed on the furnace wall to

the temperature distribution produced in the crystal.

Using the techniques described in the preceding sections, a model is presented for determining the optimal

temperature distribution to impose on the furnace wall to produce the desired temperature distribution in the crystal.

In particular, the desired temperature distribution in the crystal becomes the objective, and the temperatures on

the fumace wall comprise the design parameters. In our example problem, the fumace to be examined is one

that will be used in low gravity space processing.

A configuration proposed by researchers at GTE for growing GaAs crystals in space is illustrated in Figure

1.[10] In the proposed experiment, a round pyrolytic boron nitfide crucible with graphite end plugs and a quartz

boaom is used to contain a GaAs charge. The entire container is to be filled on earth, then sent into space, where it

will be placed in a programmable gradient fumace, melted and resolidified in a controlled manner. The geometry

L I
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Fig. 1: Schematic view of the model for the proposed experiment to grow GaAs
crystals, and corresponding finite element mesh containing 1216 nodes and 1230 elements.

of the experimental apparatus was exploited to describe the process using a two-dimensional axisymmetric finite

element model. It will be assumed that the ampoule is maintained with its axis parallel to the gravity vector.

The commercial code FIDAP[3], with modifications to enable the design sensitivities to be calculate.d, was

used for the analysis. The container and melt were modeled using four-noded linear isopammetric elements,

whereas the presence of the furnace wan was represented by a specified temperature disa'ibudon exchanging heat

by radiation with the exterior surface of the ampoule. Further details of the radiation calculation are given below.

The governing equations and boundary conditions for these types of problems are well established[l I], and

are reproduced here only to the extent necessary for the present discussion. In addition to the energy balance

equation, we must consider the momentum balance equation to model buoyancy-driven convection in the crystal.

The density was assumed to be constant, except for thermal expansion in the liquid phase, which is included by

the Boussinesq approximation. With this assumption, the steady form of the momentum balance equation is

po(u. = -vp +  v2u + pogofa - a(T - T./)) (20)

where u is the velocity, p is the pressure, # is the dynamic viscosity, go is the gravity vector, fl is the volumetric

thermal expansion coefficient, and T,,f is the temperature at which the density is p0 (in this case, the melting

temperature). Note that the presence of the buoyancy term couples the momentum balance equations to the

energy balance equation. There is no slip of the liquid past the solid, so that the velocity of the fluid is zero
at all of the boundaries of the melt.

The steady form of the energy balance equation, adopting Fourier's Law (fl = -k(x, T)g) for the constitutive

relation for heat flux, is given by

VT) = v. (arT) (21)

where cp is the specific heat and k is the temperature dependent thermal conductivity. The advection term on

the left-hand side of this equation defines the internal heat generation term, r, noted above. Heat is conserved

at the crystal-melt interface, requiring that

k, VT, • n - klVT_ • n = 0 (22)

where n is a unit vector normal to the interface and the subscripts 1 and s refer to the liquid and solid phases,

respectively. For very dilute alloys, the interface temperature can be assumed to be the melting temperature of

the parent phase, denoted Tin.

L j
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Even though the problem is steady, latent heat can be convected by the fluid flow in the melt. Latent heat

evolution was included in the model using an enthalpy-specific heat method.[12] This method requires that the

enthalpy of solidification be spread over a range of temperatures, and in all of the simulations which follow, this

interval was chosen to be IK. The specific heat was computed from the gradients of enthalpy and temperature

at each element integration point

_/VH • V//cp = _ VT (23)

and assembled using a lumped mass matrix formulation. These formulations ensure that the entire heat content

of the material is accounted for in a computadonally efficient way.J12]

The ends of the ampoule were considered to be insulated. Heat was transferred between the ampoule and the

furnace wall by radiation only. The ampoule was assumed to fit closely in the fumace, so that radiation exchange

was limited to opposing faces in the furnace, i.e. no view factor calculations were required. The Stefan-Boltzmann

law was factored, so that a nonlinear convection coefficient, heft, was defined for each integration point

qrad 0"6(T 4 4= -
2= 2+ Tj...... )IT + - Tf.... .)

Y

h,ll

(24)

For all cases, the emissivity was taken to be constant at 0.7. The material properties used in the simulations

are given in the Appendix.

Pressure was eliminated as a degree of freedom using a penalty method.[13] In this formulation, the continuity

equation for an incompressible fluid is modified to allow an artificial compressibility, so that

V- u = -&p (25)

where _p is a penalty parameter, taken to be lxl0 -s in all cases. The resulting coupled nonlinear equations for

the velocities and temperatures were resolved at each time step by Newton-Raphson iteration or by successive

substitution. Convergence was declared when both the rms change in each field variable and the residual errors

in the finite element equations fell below Ixl0 '3.

The temperature distribution for a constant temperature gradient of 5 K/mm along the furnace wall was

known to produce significant undesirable curvature of the crystal-melt interface.[1] The primary reason for is

the variation in thermal conductivity between the liquid and solid. Thus, a constant temperature gradient results

in unequal heat fluxes at the interface. (See Equation (22).) To alleviate this problem, the temperatures applied

along the furnace wall will be adjusted to produce a specified temperature distribution within the crystal. The

procedures developed in the previous sections were used for this purpose.

3.2 Implementation of Design Sensitivity Analysis

The commercial finite element code FIDAP[3] was modified to perform the adjoint load and sensitivity

calculations described in the previous section. The sensitivity calculations neglected the fluid velocities and

the coupling to the momentum equations. However, the optimization still converged in an acceptable number of

iterations because the problemis dominated by the thermal aspects. A shell program was then written to coordinate

J
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Fig. 2: Schematic of link between conjugate gradient search algorithm and FIDAP.

the nonlinear heat transfer analysis, the sensitivity analysis, and the numerical optimization. A schematic diagram

showing the details of the interface between the shell program and FIDAP is shown in Figure 2.

The file adjoint.loads in Figure 2 contained the information describing the desired temperature profile, T(z),

to be attained in the ampoule. This distribution was specified on both the center-line and the outer radius of the

crystal (inner radius of the ampoule). The objective function was then defined as the error between the desired

and computed temperatures at N discrete points

N

G = _ (T+- "T,) 2 (26)
i=l

Thus, G represents the function to be minimized.

The only design variables allowed in the problem were the fumace wall temperatures, Too(z). Note, however,

that in view of Equation (24) there is an implicit dependence of the heat transfer coefficients on Too(z) which

must be accounted for.

The progress of the optimization is illustrated in Figures 3 - 5. It is easy to see that the search through the

design space converges quickly to the optimal solution. For this case, the ambient temperature at each position

on the furnace wall opposite each surface node on the ampoule comprised the 76 design variables. The fact

that there are so many design degrees of freedom leads to the unrealistic fluctuations seen in the furnace wall

temperature profile.

This same case was then modeled using nine zones to span the entire length of the furnace. The ten specified

wall temperatures represent the design parameters, and the intermediate wall temperatures were determined via

linear interpolation. The results for this case are shown in Figure 6. It can be seen that equivalent results are

obtained for the internal temperature. It is interesting to note, however, that the results for the latter case are not

simply an average of the results from the former.

Notice that in all of these cases, the sudden changes in slope in the objective function led to sharp changes in

the furnace wall temperature profile and that the ampoule temperature was unable to capture the sudden change.

Accordingly, a new objective function was defined which maintained the discontinuity in slopes at the crystal-melt

L -J
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interface, and rolled off exponentially with distance from the interface. The results, shown in Figure 7, illuswate

that one may attain the final objective, if the physics of the problem allows it. This is the nature of optimization,

where existence and uniqueness of solutions is not always guaranteed.

For each case, the progress through the numerical optimization was very similar. Five to ten line searches

were required, with six to eight function evaluations along each line. This latter number was found to be very

sensitive to the convergence tolerance for the parabolic interpolation. Setting the tolerance below 0.01 resulted

in many more function evaluations with no improvement in the overall results. The problems ran to completion

in about one hour on a Sun SPARCstation 1+.

A quasi-Newton method was also used. but for this problem the results were almost identical. The quasi-

Newton procedure typically required one more line search than the conjugate gradient method, but there were

not enough tests done to draw any definitive conclusions.

"7
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6: Comparison of optimal solutions using 10 and 76 heating zones, respectively.

4: CONCLUSIONS

The results of the preceding section indicate the practicality of optimal process design and the utility of the

sensitivity analysis for this class of problems. The optimal solution can be found with little user intervention.

Indeed, the only work required beyond that for the normal analysis is the definition of the design variables and

objective function.

In the future, we would like to extend this work to consider transient problems. However, the analysis becomes

more complicated because the transient problem requires a convolution integral to be evaluated in the adjoint

method. Other methods, such as direct differentiation, may prove to be more efficient for this class of problems.

The sensitivity formulation used for this work did not include the advective terms in the governing equations,

and the fluid velocities were also not considered in evaluating the implicit variations of G. This will be important

for advection-dominated flows, and this work is in progress.
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Fig. 7: Optimal furnace wall and ampoule temperature profiles for exponential variation in the objective function
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Appendix A: Material Properties Used in the Simulations
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